Atomistic simulation of phonon and alloy limited hole mobility in Si1−xGex nanowires

نویسندگان

  • S. R. Mehrotra
  • P. Long
  • G. Klimeck
چکیده

The role of alloy and phonon scattering is theoretically explored in 5 nm diameter SiGe nanowires at room temperature. Low field mobility calculations are performed by utilizing sp3d5ds∗-spin-orbit-coupled tight binding model for electronic structure and Boltzmann transport formalism. Three different transport orientations <100>, <110> and <111> are considered. Alloy scattering is found to play an important role in these Si1−xGex nanowires, lending to a characteristic ’U’ shaped mobility curve as a function of alloy composition. It is concluded that to extract any advantage of higher Ge hole mobility by alloying, Ge%>70% is needed. Furthermore, the<111> channel orientation exhibits the highest hole mobility while <100> has the lowest hole mobility for any given alloy composition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Si1−xGex Alloy on Silicon by Ge-Ion-Implantation and Short-Time-Annealing

In our contribution we present the fabrication of Si1−xGex alloy by ion-implantation and millisecond ash lamp annealing. The 100 keV Ge ions at the uence of 10 × 10, 5 × 10, and 3 × 10 cm−2 were implanted into monocrystalline (100)-oriented Si wafers covered by 50 nm thermal oxide. In the consequence, the 50 nm amorphous Ge rich Si layers were obtained. The recrystallization of the implanted la...

متن کامل

Designing Si/si1−xgex Superlattices with Tailored Thermal Transport Properties

INTRODUCTION Si/Si1−xGex superlattices are promising candidates for thermoelectric energy conversion applications [1, 2], as the phonon transport through them can be inhibited while maintaining desirable electrical transport properties. No comprehensive experimental study has been performed to map the thermal conductivity design space accessible by Si/Ge nanocomposites. By using atomistic model...

متن کامل

Thermal conductivity of Si1−xGex/Si1− yGe y superlattices: Competition between interfacial and internal scattering

We investigate thermal transport in Si/Ge and Si1−xGex /Si1−yGey alloy superlattices based on solving the single-mode phonon Boltzmann transport equation in the relaxation-time approximation and with full phonon dispersions. We derive an effective interface scattering rate that depends both on the interface roughness (captured by a wave-vector-dependent specularity parameter) and on the efficie...

متن کامل

Controlling the Composition and Morphology of Si1-xGex Nanowires

Silicon (Si) and germanium (Ge) semiconductor nanowires can be utilized in next generation electronic, photonic, and energy conversion devices. Si, Ge, and Si1-xGex materials are also well studied and currently used in industry. Optoelectronic properties, such as the band gap, can be tuned by modulating the alloy composition, thus allowing for a wider range of uses. The focus of this project wa...

متن کامل

Analysis of Hole Transport in Arbitrarily Strained Germanium

Full-band Monte Carlo simulations are performed to study the properties of hole transport in bulk Germanium under general strain conditions. The band structures are calculated with the empirical non-local pseudopotential method. For Monte Carlo simulations acoustic and optical phonon scattering as well as impact ionization are taken into account. Results for biaxially strained Ge grown on a [00...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013